Transformation-invariant visual representations in self-organizing spiking neural networks
نویسندگان
چکیده
منابع مشابه
Transformation-invariant visual representations in self-organizing spiking neural networks
The ventral visual pathway achieves object and face recognition by building transformation-invariant representations from elementary visual features. In previous computer simulation studies with rate-coded neural networks, the development of transformation-invariant representations has been demonstrated using either of two biologically plausible learning mechanisms, Trace learning and Continuou...
متن کاملSelf-organizing neural networks for perception of visual motion
-The human visual system overcomes ambiguities, collectively known as the aperture problem, in its local measurements of the direction in which visual objects are moving, producing unambiguous percepts of motion. A new approach to the aperture problem is presented, using an adaptive neural network model. The neural network is exposed to moving images during a developmental period and develops i...
متن کاملSelf-organizing Neural Tree Networks
Automatic pattern classification is a very important field of artificial intelligence. For these kind of tasks different techniques have been used. In this work a combination of decision trees and self-organizing neural networks is presented as an alternative to attack the problem. For the construction of these trees growth processes are applied. In these processes, the evaluation of classifi...
متن کاملStable learning of functional maps in self-organizing spiking neural networks with continuous synaptic plasticity
This study describes a spiking model that self-organizes for stable formation and maintenance of orientation and ocular dominance maps in the visual cortex (V1). This self-organization process simulates three development phases: an early experience-independent phase, a late experience-independent phase and a subsequent refinement phase during which experience acts to shape the map properties. T...
متن کاملSelf-organizing Neural Networks in Feature Extraction
Due to large datavolumes when remote sensing or other kind of images are used, there is need for methods to decrease the volume of data. Methods for decreasing the feature dimension, in other words number of channels, are called feature selection and feature extraction. In the feature selection, important channels are selected using some search technique and these channels are used for current ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Computational Neuroscience
سال: 2012
ISSN: 1662-5188
DOI: 10.3389/fncom.2012.00046